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Abstract— Smart grids are a novel paradigm for energy
distribution, where instead of the traditional directed flow from
a producer to the consumers, several micro-generators are
spread throughout the network. We focus on the problem of
coordinating the injection of active power into the grid by the
micro-generators. Each of them aims at injecting the maximum
amount of power, satisfying some operative constraints such
as voltage boundaries; a tradeoff must be found among these
conflicting objectives. First, we characterize the active power
increment region, i.e., the set of all the increments of injected
power that, depending on the grid state, satisfy the voltage
boundary. Based on this finding, we frame the problem within
game theory and propose a distributed approach that achieves
a fair share of the active power injection, while at the same
time satisfying the voltage boundary.

I. INTRODUCTION

The advent of distributed energy resources such as wind
turbines, solar cells, or other renewable energy sources
is deeply changing the actual power distribution scenario,
and represents the key component of the smart grid [1].
These devices are called micro-generators, in contrast to
traditional power plants, and are connected to the grid
via electronic interfaces, called inverters (essentially, dc-ac
converters) Their use can lead to a number of benefits for the
electrical distribution system, such as reduction of line losses,
voltage profile improvements, and decrease of emissions of
pollutants [2]. The development of the smart grids is strictly
related to the study of algorithms and methods to address the
problems arising in the new energetic scenario, such as the
bidirectionality of the power flow, the unpredictability of the
energy supply from micro-generators and the management
of active and reactive power flows [3], [4]. This last point
is crucial, since the injection of power from the micro-
generators can lead, if not conveniently regulated, to grid
instability. For this reason, it is important to properly design
the operation policy of the distributed generators (DGs). An
approach to solve this problem is to study the injection region
of the network [5]. Due to the possible large number of actors
in the grid, distributed approaches are replacing traditional
centralized control algorithms. If the system must satisfy
voltage magnitude constraints, a popular distributed approach
is the droop control of the inverters [6], [7], which does not
require communications between the DGs. Instead, when the
DGs have communication capabilities, more sophisticated
algorithm can be developed [8], [9].
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We envision Game Theory, the popular branch of math-
ematics that studies the interactions and conflicts between
multiple players within a common system [10], as a pos-
sible approach. In the present paper, the players are the
microgenerators, also named compensators because they are
the controllable part of the grid, that want to maximize the
amount of active power that they inject into distribution
network; the economic counterpart of this injection is that
the injected power is sold to the main provider, and thus
the microgenerators aim at increasing their revenues. Other
works use game theory for similar goals involving control
of the injected power. For example, in [11] and [12], the
authors use a minmax approach, in which only one agent
plays at each step, while the others maintain the injected
power constant. In [13] the micro-generators try to construct
the optimal coalitions that will exchange the power produced
with the aim to minimize the power losses. In all the
previous example, the compensators try to improve the global
distribution system performance, and their goal functions are
related to some performance index of the grid; in this paper,
the compensators are only interested in maximizing a egoistic
function, i.e. the amount of power that they inject.

II. MATHEMATICAL PRELIMINARIES AND NOTATIONS

Let G = (V, E , σ, τ) be a directed graph, where V is the
set of nodes, E is the set of edges, with n = |V|, r = |E|.
Moreover σ, τ : E → V are two functions such that edge
e ∈ E goes from the source node σ(e) to the terminal node
τ(e). Two edges e and e′ are consecutive if the intersection
{σ(e), τ(e)} ∩ {σ(e′), τ(e′)} is not empty. A path is a
sequence of consecutive edges (regardless of their direction).

If Γ is a Cp×q matrix then Γ(u, v) denotes the element in
the u-th row and in the v-th column of Γ. Similarly, if x ∈
Cp, its ith element is denoted by x(i); also, |x| is the vector
whose elements are |x|(i)=|x(i)|, ∀i=1, . . . , p, and x2 is
the vector whose elements are x2(i)=x(i)2, ∀i=1, . . . , p.
The operation of element-wise complex conjugation and
matrix transposition are denoted by ¯ and T , respectively.
If x, y ∈ Rp, x � y means that x(i) ≤ y(i) ∀i = 1, . . . , p.

Let A ∈ {0,±1}r×n be the incidence matrix of the graph
G, defined via its elements

A(e, v) =

 −1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

If W is a subset of indices, we define as 1W the column
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vector whose elements are

1W(v)

{
1 if v ∈ W
0 otherwise.

Similarly, if w is an index, we denote by 1w the column
vector whose value is 1 in position w, and 0 elsewhere, and
we denote by 1 the column vector of all ones.

III. MICROGRID LINEAR MODEL

For the purpose of this paper, we model a microgrid as
a directed graph G, in which the edges in E represent the
power lines, and the nodes in V represent both loads and
generators that are connected to the microgrid. These include
the residential and industrial consumers, microgenerators,
and also the point of connection of the microgrid to the
transmission grid (called point of common coupling, or
PCC).

We limit our study to the steady state behavior of the
system, where all voltages and currents are sinusoidal signals
at the same pulsation ω0. Each signal can therefore be repre-
sented via a complex number whose amplitude corresponds
to the signal root-mean-square value, and whose phase
corresponds to the phase of the signal at t = 0. Therefore,
y represents the signal y(t) = |y|

√
2 sin(ω0t + ∠y). The

system state is described by the following system variables:
• u ∈ Cn, where u(v) is the grid voltage at node v;
• i ∈ Cn, where i(v) is the current injected by node v

into the grid;
• ξ ∈ Cr, where ξ(e) is the current flowing on edge e.
• s = p + iq ∈ Cr, where s(v), p(v) and q(v) are the

complex, the active and the reactive power injected by
node v into the grid respectively;

The following equations (Kirchhoff’s current and voltage
law) are satisfied by u, i and ξ:

AT ξ + i = 0, (1)
Au+ Zξ = 0, (2)

with Z=diag(z(e), e∈E), and z(e)∈C being the impedance
of power line e; thus, at each node v, the injected current
i(v) is related to voltage u(v). We label the PCC as node 0
and take it as a constant voltage generator (slack bus), i.e.

u(0) = U0 . (3)

We assume U0 ∈ R. Instead, for every v ∈ V \ {0}

u(v)̄i(v) = s(v), ∀v ∈ V \ {0}, (4)

Model (4) is called constant power model; each node will
inject the nominal complex power s(v) independently of
its voltage u(v). We define the complex-valued Laplacian
as L = ATZ−1A, and the Green matrix X as the only
symmetric matrix that satisfies{

XL = I − 11T0
X10 = 0,

(5)

Matrix X depends only on the topology of the microgrid
power lines and their impedances. We denote X(i, j) =
X(i, j)∠X(i,j).

If we set the nominal voltage U0 at the PCC, all the
currents i and the voltages u are determined by

u = Xi+ U01

1T i = 0

u(v)̄i(v) = s(v), ∀v ∈ V \ {0},
(6)

where the first equation results from (1), (2), and (3).
Let s be the vector of all nominal complex powers s(v),

including s(0) := −
∑
v∈V\{0} s(v). Then, from (6), a linear

approximated model relating the voltages and the powers
injected in the grid can be derived [14]{

u = X
U0
s̄+ U01

1T s = 0,
(7)

IV. ACTIVE POWER INJECTION

Let C ⊂ V be the set of the compensators, and m := |C| is
its cardinality. For the sake of analytical simplicity, we also
include the PCC in C, even though it is not controllable, i.e.,
its power injection into the grid cannot be commanded. They
represent the smart part of the grid. It is useful to distinguish
the m components of u and p that represent the state of the
compensators. Without loss of generality, assume they are at
the first positions of the vectors, i.e.

u =

[
uC
uV\C

]
p =

[
pC
pV\C

]
where uC ∈Cm, pC ∈Rm and uV\C ∈Cn−m, pV\C ∈Rn−m.
This induces the following partition on X as

X =

[
XC XC,V\C

XT
C,V\C XV\C

]
.

We assume that there is no limit on the generation capability
of the microgenerators. The only constraints come from
the voltage profile quality and the voltage values that are
guaranteed to the customers. A compromise must be sought
among the microgenerators on the amount of active power
that they will inject in the distribution system, in order
to satisfy their objectives to inject the maximum possible
amounts of energy. Also, the operative constraints must be
respected; the latter can be translated into voltage magnitude
boundaries, i.e., it has to be guaranteed

||u| − U01| � βU01 (8)

where β is a confidence margin, e.g. β=0.05. We assume
that only the compensators measure their voltages and com-
municate with each other. The optimal policy is to seek for

||uC | − U01| � βU01

For notational simplicity, from now on, we will drop the
subscript from uC . Moreover, we relax the constraint to
require

|u| − U01 � βU01 (9)
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Indeed, as compensators have no limits on their generation
capability and they desire to inject the maximum allowed
active power, the minimum voltage bound would never be
active. For the sake of simplicity, we do not consider other
possible constraints such as loss limits on individual lines or
thermal losses of the line. Now, assume the network state at
some instant to be represented by voltages u and powers s,
and that the compensators active power injection changes by
∆ ∈ Rm. By (7), the new voltages u′∆ will be

u′∆ = u+
XC
U0

∆ (10)

We define ψM = ((1+β)U0)21−|u|2 and ψ∆ = |u′|2−|u|2.
The elements of ψ∆ and ψM can be negative. If u′ is a
feasible point, i.e. it satisfies (9), it holds

ψ∆ � ψM (11)

We define δMi as the maximum change, possibly negative, in
the active power injected by i such that, after the injection
changing ∆M

i = δMi 1i, from (10) it holds{
|u′

∆M
i

(i)| ≤ (1 + β) U0 ∀i ∈ C,
∃j ∈ C : |u′

∆M
i

(j)| = (1 + β)U0

(12)

Clearly ψ∆M
i
� ψM . Let θij = ∠X(i, j) − ∠u(i) be the

difference between the phase of X(i, j) and the phase of
the phasor u(i). We make the following

Assumption 1: Let the phase be 0 ≤ ∠X(i, j) ≤ 90◦,
and let −90◦+∠X(i, j) ≤ ∠u(i) ≤ 90◦+∠X(i, j) so that
cos θij = cos(∠X(i, j)− ∠u(i)) ≥ 0 ∀i, j ∈ C.
Since ∀i, j ∈ C, after changing the injection by ∆j = δj1j ,

|u(i)′∆j
(i)|2 = |u(i)|2+δ2

j

X(i, j)2

U2
0

+2δj
X(i, j)

U0
|u(i)| cos θij

(13)
then if δj > 0, |u(i)′| will increase, and conversely decrease
only if δj is negative. As a consequence, given voltages uC ,
the quantities δpMi will be either all positive or all negative.

We now prove some useful lemmas.
Lemma 2: If n ≥ 1, ai ∈ R, i = 1, . . . , n, consider

Γ =


a1 − a2

1 −a1a2 . . . −a1an
−a2a1 a2 − a2

2 . . . −a2an
. . . . . . . . . . . .
−ana1 −ana2 . . . an − a2

n


Then

det Γ =

n∏
i=1

ai
(
1−

n∑
i=1

ai
)

(14)

Proof: See the appendix.
Lemma 3: Let n ≥ 1, 0 ≤ ai ≤ 1, i = 1, . . . , n,∑n
i=1 ai ≤ 1. Then, ∀xi ∈ R, i = 1, . . . , n it holds

( n∑
i=1

aixi
)2 ≤ n∑

i=1

aix
2
i (15)

Proof: To check (15) we have to show that
n∑
i=1

aix
2
i −

( n∑
i=1

aixi
)2 ≥ 0 (16)

It is easy to verify that the left hand side of (16) is a quadratic
form that can be rewritten as

[
x1 . . . xn

]T a1 − a2
1 . . . −a1an

. . . . . . . . .
−ana1 . . . an − a2

n


x1

...
xn

 (17)

from Lemma 2 and from the hypothesis it trivially follows
that it is also positive semidefinite, as every principal minor
of the matrix has non-negative determinant.
Assume there are ` compensators that want to change their
active power injection to share the active power generation.

Proposition 4: Let ∆1 = δ111, . . . ,∆` = δ`1` be a
sequence of possible changes on the injection of active
power, each of them leading to a feasible point that satisfies
(9). Let λ ∈ R`, with all the λ(i)’s greater than or equal to
zero and such that 1Tλ = 1. Then the convex combination

∆λ = λ1∆1 + · · ·+ λ`∆` (18)

leads, with respect to the model (10), to a feasible point.
Proof: Let u be the voltages of the compensator at some

instant. If we change the amount of injected active power by
(18), we obtain ∀i ∈ C

|u′(i)|2 =

(
|u(i)|+

∑̀
j=1

X(i, j)

U0
λjδj cos θij

)2

+

(∑̀
j=1

X(i, j)

U0
λjδj sin θij

)2

and so

ψ∆λ
(i) =

∑̀
j=1

(
X(i, j)

U0
λjδj

)2

+ 2
∑̀

j,k=1,k 6=j

X(i, j)X(i, k)

U2
0

λjλkδjδk cos(θij−θik)

+ 2
∑̀
j=1

X(i, j)

U0
λjδj cos(θij)|u(i)| (19)

From (13), we have∑̀
j=1

λjψ∆j
(i) =

∑̀
j=1

λj

(
X(i, j)

U0
δj

)2

+ 2
∑̀
j=1

λj
X(i, j)

U0
δj cos(θij)|u(i)|

(20)

Using (19) and (20), we get∑̀
j=1

λjψ∆j
(i)− ψ∆λ

(i) ≥
∑̀
j=1

λj

(
X(i, j)

U0
δj

)2

−
(∑̀
j=1

λj
X(i, j)

U0
δj

)2

≥ 0

and then, from Lemma 3 and from (11), it follows that

ψ∆λ
(i) ≤

∑̀
j=1

λjψ∆j
(i) ≤ ψM (i)

∑̀
j=1

λj = ψM (i)

which means that u′ is feasible.
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The previous Proposition 4 can be used to construct an
m-dimensional region of the active powers injected by the
compensators that is strictly contained in the region of
feasible states of the distribution network, with respect to
(9). The key is to compute the δi’s exploiting the voltages
phasorial measurements taken by phasor measurement unit
(PMU) [15]. This could be done by a central control unit
that receives the voltage measurements by the compensators
and exploits the knowledge of the grid topology, or in a
distributed iterative way.

V. ACTIVE POWER INJECTION GAME

Given any state of the grid, the compensators either can or
cannot increase the amount of active power injected, depend-
ing on whether (9) is satisfied or not. The ` compensators
wanting to change their injected active power need to reach a
(possibly fair) agreement. To this end, we propose to employ
a repeated games framework. The game will choose the
active power change between the convex combinations of
the ∆M

i ’s. This is, from the analysis of Section IV, within
the Pareto boundary. Moreover, if the lines can be regarded
as resistive and the voltages phases are sufficiently small, in
(13), we have cos θij ' cos(∠X(i, j)) ' 1, and so, if the
active power injected changes by ∆ ∈ Rm, ∀i = 1, . . . ,m

|u(i)′∆| ' |u(i)|+
∑̀
j=1

∆(j)
X(i, j)

U0
cos(∠Xij) (21)

i.e. the voltages magnitudes are almost linear in the active
power. Thus, if each δMi leads the same compensator to have
a voltage magnitude of (1 + β)U0, the Pareto boundary of
the feasible region induced by the linear system (21) is the
convex combination of the ∆M

i ’s.
Now, we analyze three different games that can be used to

decide the amount of the injected active power change. We
assume that the number of playing compensators ` = 2α is a
power of 2, and that the PCC does not take part in the game.
This assumption is not restrictive since we could always add
b dummy compensators with δ = 0 such that ` + b = 2α.
At first, each compensator receives or computes the value
δ0
i = δMi . Then, the compensators are divided into pairs

playing the following game. Let i, j ∈ C be the compensators
that form one of these couples. They play the game

max
0≤λ≤1

ϕ(λδ0
i , (1− λ)δ0

j ) (22)

i.e., maximize a function that models the fairness of their
agreement moving on the Pareto boundary approximation,
obtaining a first stage game where

δ1
i = λ1

i δ
M
i = λδMi , δ1

j = λ1
jδ
M
j = (1− λ)δMj (23)

After this, each pair elects a representative, which will be
paired with the representative of another pair. For instance,
let the representatives of (i, j) and (f, g) be i and g respec-
tively. Then, they play a second stage where

max
0≤λ≤1

ϕ(λδi1, (1− λ)δg1) (24)

where ϕ is a proper function discussed later, obtaining

δ2
i = λ2

i δ
1
i = λδ1

i = λ2
iλ

1
i δ
M
i

δ2
g = λ2

gδ
1
g = (1− λ)δ1

g = λ2
gλ

1
gδ
M
g

Now, i and g notify λ2
i and λ2

g to the node they were
originally paired with (j and f , respectively), which compute

δ2
j = λ2

i δ
1
j = λ2

iλ
1
jδ
M
j , δ2

f = λ2
gδ

1
f = λ2

gλ
1
fδ
M
f

This process is further iterated up to α times.
A suitable ϕ is the square of the geometric average,

leading to a solution akin to Nash bargaining solution [16],

ϕ(x, y) = xy . (25)

It is easy to see that the solution of the k-th stage (played
for example by i and j) using (25) is

λki =
1

2
, λkj =

1

2
(26)

and that the algorithm induces

δ1 =
δM1
2α

=
δM1
`
, . . . , δ` =

δM`
2α

=
δM`
`

(27)

and so it can be computed just knowing the number of
playing compensators in the microgrid (that would not be
constrained to a power of 2) and the values δM1 , . . . , δM` .

Another function that can be used is

ϕ(x, y) = −
∣∣∣∣ xζx − y

ζy

∣∣∣∣ (28)

which trivially forces a solution characterized by the fact that
the ratio δi/ζi is equal for each compensators i. Notice that,
if the ζi’s are chosen proportionally to the nominal generation
capabilities of the inverters, the solution is similar to the one
obtained by the classical droop control. It is easy to see that
the solution of the k-th stage (played for example by i and
j) using (28) is

λki =
ζiδ

k−1
j

ζjδ
k−1
i + ζiδ

k−1
j

, λkj =
ζjδ

k−1
i

ζjδ
k−1
i + ζiδ

k−1
j

(29)

Instead, the choice of all equal ζi’s compels the compensators
to make the same change of injected active power, ending in
a solution

δ1 = · · · = δ` , δeq (30)

where δeq is the common value of all δi’s.
As will be seen in Section VI, values δM1 , . . . , δM` can

be very different, and are heavily dependent by the com-
pensators position in the grid. So, solution (27), in spite of
its apparent fairness, can actually lead to very unbalanced
outcomes, which means that some compensators are priv-
ileged because of their locations. On the other hand, the
solution of (30) seems the most egalitarian, being all the
δi’s equal. Yet, if we compute the total injected active power∑`
i=1 δi = `δeq , it can be much smaller than what computed

as per (27), i.e., 1
`

∑`
i=1 δ

M
i . A possible trade-off is to move

on the Pareto boundary between the solutions induced by
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TABLE I
INITIAL ALLOCATION

node |u| [V] δM [kW]
2 4742 7478
4 4744 3190

14 4708 2121
16 4723 4909
20 4722 2603
24 4688 2881
30 4673 1614
33 4647 1624

(26) and (29), i.e. at the k-th stage played by i and j, to
choose

λki =
δk−1
j

δk−1
i + δk−1

j

+ η
(1

2
−

δk−1
j

δk−1
i + δk−1

j

)
λkj =

δk−1
i

δk−1
i + δk−1

j

+ η
(1

2
− δk−1

i

δk−1
i + δk−1

j

) (31)

with 0 ≤ η ≤ 1, η being a parameter that has to be properly
designed to obtain the desired solution.

VI. NUMERICAL RESULTS

As a low voltage testbed is currently missing in the
literature, we considered a 4.8 kV testbed inspired from
the standard test feeder IEEE37 [17]. However, we assume
that the loads are balanced, and therefore all the signals
can be described in a single-phase phasorial notation. As
shown in Fig. 1, some of the nodes are microgenerators
connected to the microgrid via power inverters. Following
the model proposed in Section III, we consider every node
(but the PCC) behaving as a constant-power device. At first
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Fig. 1. Graph of a microgrid based on the IEEE37 test feeder [17]. The
nodes represent microgenerators (circled), loads, and the PCC (node 0).

the ` playing compensators obtain or compute δM1 , . . . , δM` .
This computation is done considering constraint (9), with
β = 0.05. The results are reported in Table I. After that,

TABLE II
RESULTING ALLOCATION BY USING (26)

node λ δ [kW] |u′| [V]
2 0.125 934.81 4873
4 0.125 398.75 4896
14 0.125 265.12 4870
16 0.125 613.68 4897
20 0.125 325.43 4914
24 0.125 360.18 4906
30 0.125 201.81 4896
33 0.125 203.00 4899

0 1 2 3 4 5 6 7 8

x 10
6

0

1

2

3

4

5

x 10
6

P
2

P
16

 

 

δ
2
M

δ
16
M

Pareto Boundary
Convex approximation

Fig. 2. In this case, only compensators 2 and 16 change their injected
power, starting from P2 = P16 = 0. The solid line represents the Pareto
Front, the dotted line is its approximation by the convex combination of
∆2 and ∆16 (thus shown to be feasible).

to compare the three possible games, we compute the λi’s
playing the games determined by (26), (30), or (31) with
η = 0.7, as well as the values injected, i.e., δi = λiδ

M
i .

The results are reported in Tables II, III, IV, respectively.
Table II shows very different values of the δi’s. In this
scenario the compensators closer to the PCC take advantage
from their locations. Conversely, the δi in Table III are
all equal, but there is a pronounced difference among the
λi’s, which implies a dissimilarity in the quantities that each
compensators avoid to inject. Furthermore, the total amount
of the change in the active power injection, which in some
sense represents the “global fairness”, is

∑`
i=1 δi = 2.59

MW, much lower than the one computed with the δi’s of
Table II (3.30 MW). The δi’s in Table IV represent globally a
mediation between the requirements of “individual fairness”
and “global fairness”, and sum to 2.88 MW.

As a final consideration, in all the cases the |u′i|’s are all
feasible as Proposition 4 holds. In Fig. 2 it is shown how the
linear combination of the δi’s approximate the Pareto front,
in the case in which only two compensators play.

VII. CONCLUSIONS

In this paper we analyzed the problem of sharing the
active power generation among the micro-generators in a
smart grid. We aim at a fair, ethical sharing. First of al,l we
characterized a feasible region for the active power injected
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TABLE III
RESULTING ALLOCATION BY USING (30)

node λ δ [kW] |u′| [V]
2 0.0433 353.87 4827
4 0.1015 323.76 4845

14 0.1526 323.76 4864
16 0.0659 323.76 4848
20 0.1244 323.76 4866
24 0.1124 323.76 4884
30 0.2005 323.76 4887
33 0.1994 323.76 4900

TABLE IV
RESULTING ALLOCATION BY USING (31) WITH η = 0.7

node λ δ [kW] |u′| [V]
2 0.0739 552.76 4857
4 0.1360 433.97 4881

14 0.1289 273.37 4854
16 0.0873 428.53 4878
20 0.1282 333.85 4896
24 0.1141 328.81 4893
30 0.1548 249.88 4917
33 0.1767 287.02 4899

by the micro-generators in a smart grid. Then we studied
a repeated game setup to reach an agreement among the
compensators about the amount of active power that they
will inject, moving along a Pareto boundary approximation.
We derived and analyzed three types of solutions. Finally
we evaluated the resulting approach through simulation over
the standard test feeder IEEE37. Future developments are
the addition of a voltage magnitude lower bound, a deeper
analysis on the creation of active and reactive power feasible
injection region, the study of repeated execution of the
algorithm in order to better approach the Pareto boundary, the
introduction of limitations for the generation capacity of the
micro-generators, as well as the algorithm implementation
into a real test-bed.

APPENDIX
PROOF OF LEMMA 2

The proof is by induction on n. If n = 1, then Γ =
a1 − a2

1 = a1(1 − a1). Assume now that the condition is
verified up to n, and prove it for n+ 1. We have

Γ=


a1−a2

1 . . . −a1an −a1an+1

. . . . . . . . . . . .
−ana1 . . . an−a2

n −anan+1

−an+1a1 . . . −an+1an an+1−a2
n+1

=

[
Γ11 Γ12

ΓT12 Γ22

]

Due to relationship

det Γ = det Γ11 det(Γ22 − ΓT12Γ−1
11 Γ12)

and as it is easy to verify that

Γ−1
11 = c


1−

∑
i6=1 ai

a1
1 . . . 1

1
1−

∑
i6=2 ai

a2
. . . 1

. . . . . . . . . . . .

1 1 . . .
1−

∑
i6=n ai

an



with c = 1
1−

∑n
i=1 ai

, then

det(Γ22−ΓT12Γ−1
11 Γ12) =

= det

(
an+1 − a2

n+1 −
a2
n+1

∑n
i=1 ai

1−
∑n
i=1 ai

)
=
an+1

(
1−

∑n+1
i=1 ai

)
1−

∑n
i=1 ai

det Γ =

n∏
i=1

ai
(
1−

n∑
i=1

ai
)an+1

(
1−

∑n+1
i=1 ai

)
1−

∑n
i=1 ai

=

n+1∏
i=1

ai
(
1−

n+1∑
i=1

ai
)

which proves the lemma.

REFERENCES

[1] P. Barker and R. W. de Mello, “Determining the impact of distributed
generation on power system,” in in Proc. IEEE Power Eng. Soc.
Summer Meeting, 2000, vol. 3, pp. 1645-1656, 2000.

[2] R. Ramakumar and P. Chiradeja, “An approach to quantify the
technical benefits of distributed generation,” IEEE Transactions on
Energy Conversion, 2004, submitted.

[3] A. Ipakchi and F. Albuyeh, “Grid of the future. are we ready to
transition to a smart grid?” IEEE Power Energy Magazine, vol. 7,
no. 2, pp. 52 –62, Mar.-Apr. 2009.

[4] M. Liserre, T. Sauter, and J. Y. Hung, “Future energy systems:
Integrating renewable energy sources into the smart power grid through
industrial electronics,” IEEE Industrial Electronics Magazine, vol. 4,
no. 4, pp. 18 –37, Mar. 2010.

[5] J. Lavaei, D. Tse, and Zhang, “Geometry of power flows in tree
networks,” in Power and Energy Society General Meeting, 2012 IEEE,
2012.

[6] Y. W. Li and C.-N. Kao, “An accurate power control strategy for
power-electronics-interfaced distributed generation units operating in
a low-voltage multibus microgrid,” IEEE Transactions on Power
Electronics, 2009, submitted.

[7] J. W. Simpson-Porco, F. Dorfler, and F. Bullo, “Droop-controlled
inverters in microgrids are kuramoto oscillators,” in IFAC Workshop
on Distributed Estimation and Control in Networked Systems, Santa
Barbara, California, USA, pages 264-269, September 2012, 2012.

[8] M. E. Baran and I. M. El-Markabi, “A multiagente-based dispatching
scheme for distributed generators for voltage support on distribution
feeders,” IEEE Transactions on Power Systems, 2007, submitted.

[9] A. Y. S. Lam, B. Zhang, A. Dominguez-Garcia, and D. Tse, “Optimal
distributed voltage regulation in power distribution networks,” in Arxiv
preprint arXiv:1204.5226, 2012, 2012.

[10] G. Owen, Game Theory, 3rd ed. New York: Academic, 2001.
[11] W. Weaver and P. Krein, “Game-theoretic control of small-scale power

systems.” IEEE Trans. on Power Delivery, vol. 24, no. 3, pp. 1560–
1567, Jul. 2009.

[12] W. Weaver, “Dynamic energy resource control of power electronics
in local area power networks.” IEEE Trans. on Power Electronics,
vol. 26, no. 3, pp. 852–859, Mar. 2011.

[13] W. Saad, Z. Han, and H. V. Poor, “Coalitional game theory for
cooperative micro-grid distribution networks,” in Proc. IEEE ICC
Workshops, 2011.

[14] S. Bolognani and S. Zampieri, “A distributed control strategy for
reactive power compensation in smart microgrids,” in Arxiv preprint
arXiv:1106.5626, 2011, 2011.

[15] A. G. Phadke and J. S. Thorp, Synchronized phasor measurements and
their applications. Springer, 2008.

[16] J. Nash, “The bargaining problem,” Econometrica, vol. 28, pp. 152–
155, 1950.

[17] W. H. Kersting, “Radial distribution test feeders,” in IEEE Power
Engineering Society Winter Meeting, vol. 2, Jan. 2001, pp. 908–912.

2037


